
Signal Transduction

Ebaa Alzayadneh, PhD

Prohormones and Prehormones

- Prohormone:
 - Precursor is a longer chained polypeptide that is cut and spliced together to make the hormone.
 - Proinsulin gives insulin
- Preprohormone:
 - Prohormone derived from larger precursor molecule.
 - Preproinsulin.
- Prehormone:
 - Molecules secreted by endocrine glands that are inactive until changed into hormones by target cells.
 - T_4 converted to T_3 (tri-iodothyronin).

Synthesis and secretion of peptide hormones

Chemical classification of hormones

Chemical Classification	Examples	Regulated Function
Endocrine Hormones		
Amino acid derivatives	Epinephrine (adrenaline) and norepinephrine (both derived from tyrosine)	Stress responses: regulation of heart rate and blood pressure; release of glucose and fatty acids from storage sites
	Thyroxine (derived from tyrosine)	Regulation of metabolic rate
Peptides	Antidiuretic hormone (vasopressin)	Regulation of body water and blood pressure
	Hypothalamic hormones (releasing factors)	Regulation of tropic hormone release from pituitary gland
Proteins	Anterior pituitary hormones	Regulation of other endocrine systems
Steroids	Sex hormones (androgens and estrogens)	Development and control of reproductive capacity
	Corticosteroids	Stress responses; control of blood electrolytes
Paracrine Hormones		
Amino acid derivative	Histamine	Local responses to stress and injury
Arachidonic acid derivatives	Prostaglandins	Local responses to stress and injury

Table 10-4 Chemical Classification and Function of Hormones

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Peptide & Protein Hormones

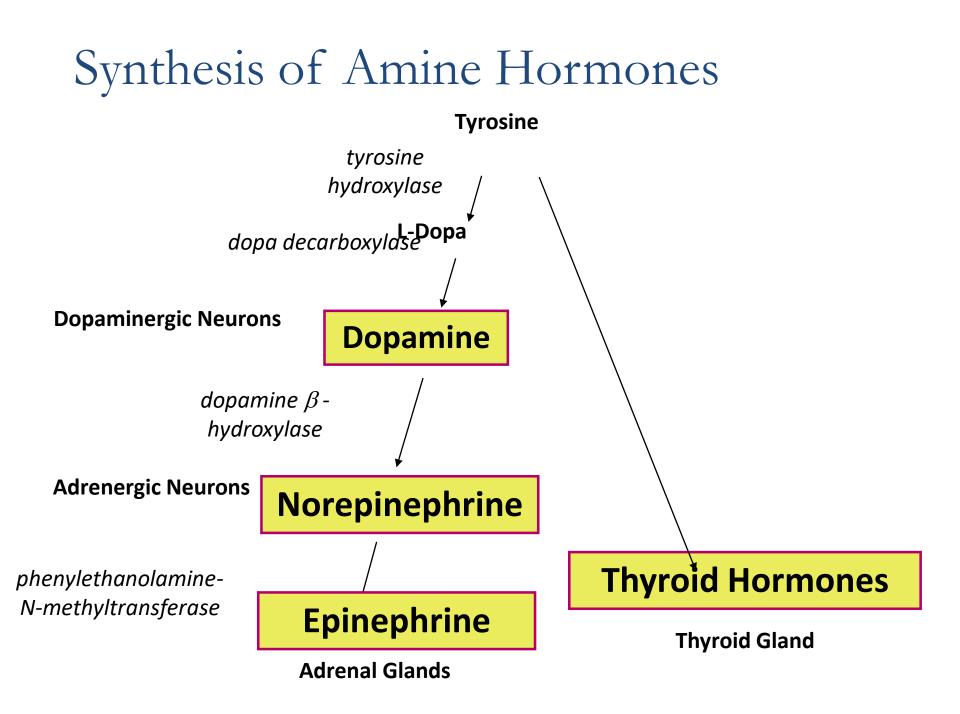
Gland/Tissue	Hormones	Gland/Tissue	Hormones
Hypothalamus	 TRH, GnRH, CRH GHRH, Somatostatin, 	Placenta	• HCG, HCS or HPL
Anterior pituitary	■ ACTH, TSH, FSH, LH, PRL, GH	Kidney	Renin
Posterior pituitary	 Oxytocin, ADH 	Heart	ANP
Thyroid	 Calcitonin 	G.I. tract	 Gastrin, CCK, Secretin, GIP,
Pancreas	 Insulin,Glucagon, Somatostatin 		Somatostatin
Liver	Somatomedin C (IGF-1)	Adipocyte	Leptin
Parathyroid	■ PTH	Adrenal medulla	 Norepinephrine, epinephrine

Amine Hormones

Gland/Tissue

Hypothalamus

Dopamine


Hormones

Thyroid

■ T₃, T₄

Adrenal medulla

Epinephrine and Norepinephrine (NE, EPI)

Steroid Hormones

Gland/Tissue

Adrenal Cortex

Testes

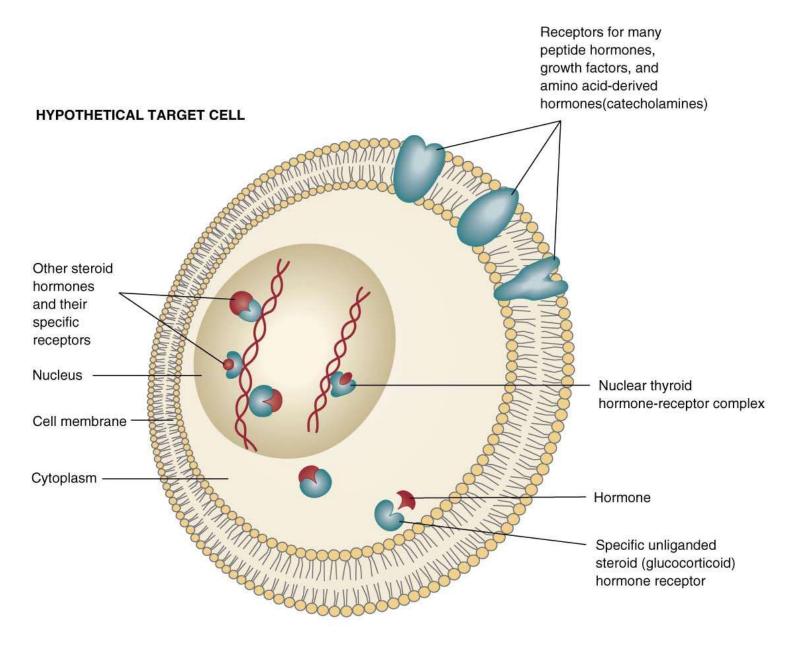
Ovaries Corpus Luteum

Placenta Kidney

Hormones

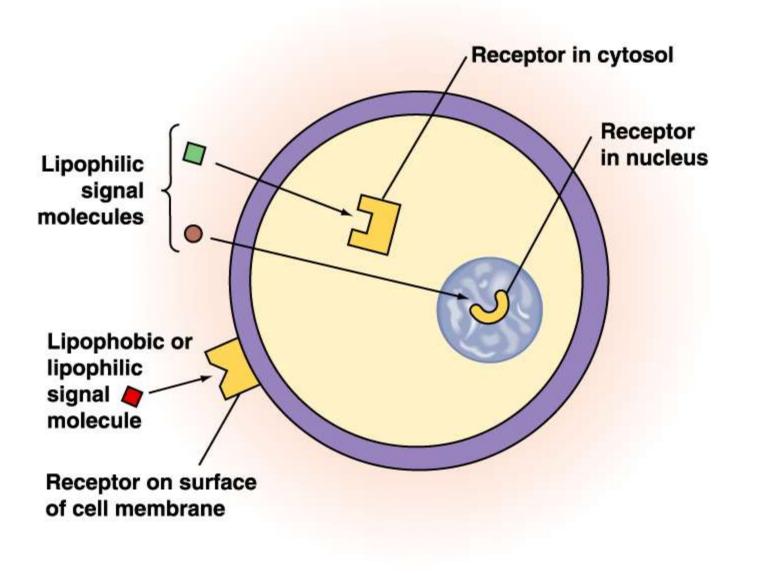
- Cortisol, Aldosterone, Androgens
- Testosterone
- Estrogens, Progesterone
- Estrogens, Progesterone
- Estrogens, Progesterone
- 1,25-Dihydroxycholecalciferol (calcitriol)

Hormone Activity


- Hormones affect only specific target tissues with specific receptors
- Receptors are dynamic and constantly synthesized and broken down
 - Down-regulation- decrease in receptor number or esponse
 - Up-regulation- increase in receptor number or activity

Effects of [Hormone] on Tissue Response

- Priming effect (upregulation):
 - Increase number of receptors formed on target cells in response to particular hormone.
 - Greater response by the target cell.
- Desensitization (downregulation):
 - Prolonged exposure to high [polypeptide hormone].
 - Subsequent exposure to the same [hormone] produces less response.
 - Decrease in number of receptors on target cells.
 - » Insulin in adipose cells.
 - Pulsatile secretion may prevent downregulation.


Effects of hormone concentration on Tissue Response

- [Hormone] in blood reflects the rate of secretion.
- Half-life:
 - Time required for the blood [hormone] to be reduced to ½ reference level.
 - Minutes to days.
- Affinity of receptors to ligands, Kd
- Normal tissue responses are produced only when [hormone] are present within physiological range.
- Varying [hormone] within normal, physiological range can affect the responsiveness of target cells.

. Diagram showing the different locations of classes of hormone receptors expressed by a target cell.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.

Mechanisms of Hormone Action

- Hormones of same chemical class have similar mechanisms of action.
 - Similarities include:
 - Location of cellular receptor proteins depends on the chemical nature of the hormone.
 - Events that occur in the target cells.
- To respond to a hormone:
 - Target cell must have specific receptors for that hormone (specificity).
 - Hormones exhibit:
 - Affinity (bind to receptors with high bond strength).
 - Saturation (low capacity of receptors).

Mechanisms of Hormone Action

- Lipid-soluble hormones bind to receptors inside target cells
- Water-soluble hormones bind to receptors on the plasma membrane
 - \oplus Activates second messenger system
 - +Amplification of original small signal
- Responsiveness of target cell depends on
 Hormone's concentration

Receptor

Receptors are specific membrane proteins, which are able to recognize and bind to corresponding ligand molecules, become activated, and transduce signal to next signaling molecules.

Glycoprotein or Lipoprotein

Receptors

 Specificity: The "specificity" of a ligand for a receptor is a description of how favorable the binding of the ligand for the receptor is compared with its possible binding to other types of receptors that may also be present.

- Affinity: "Affinity" simply refers to how strong the binding is (as judged by K association or K dissociation and ΔGo). "High affinity" refers to
 very strong binding (large negative ΔGo and a second a

ligand

A small molecule that binds specifically to a larger one; for example, a hormone is the ligand for its specific protein receptor. • Membrane receptors

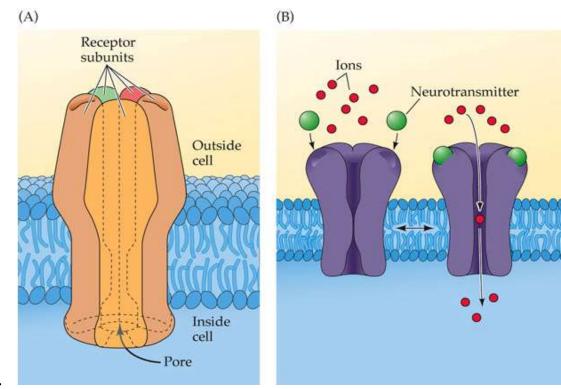
Membrane Glycoprotein

• Intracellular receptors

Cytosol or nuclei DNA binding protein

Receptors superfamilies:

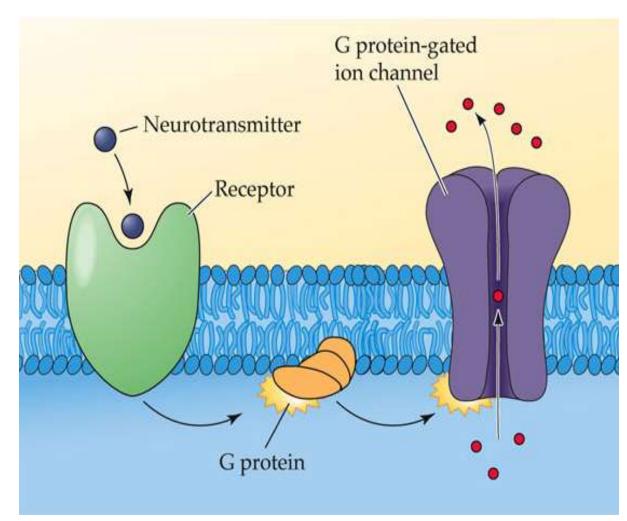
- Ionotropic receptors (ligand-gated channels)
- Metabotropic receptors (G protein-coupled receptors)Tyrosine Kinase


Characteristics	lonotropic receptors	Metabotropic receptors
Structure	4 or 5 subunits that assemble in the cell membrane	1 subunit
Mechanism of action	Contain an intrinsic ion channel that opens in response to neuro- transmitter or drug binding	Activate G proteins in response to neurotrans- mitter or drug binding
Coupled to second messengers?	No	Yes
Speed of action	Fast	Slower

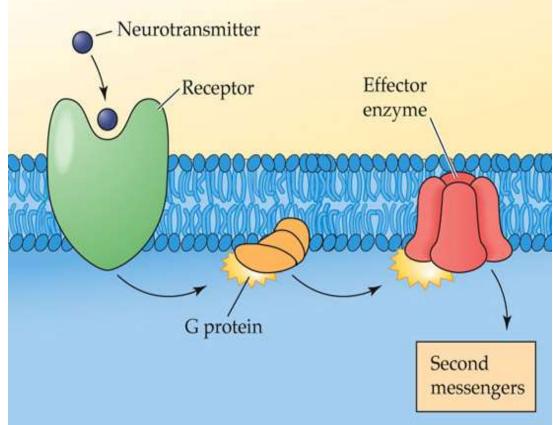
Comparison of Ionotropic and Metabotropic Receptors

Almost all neurotransmitters discovered so far have more than one kind of receptor -- called **receptor subtypes.**

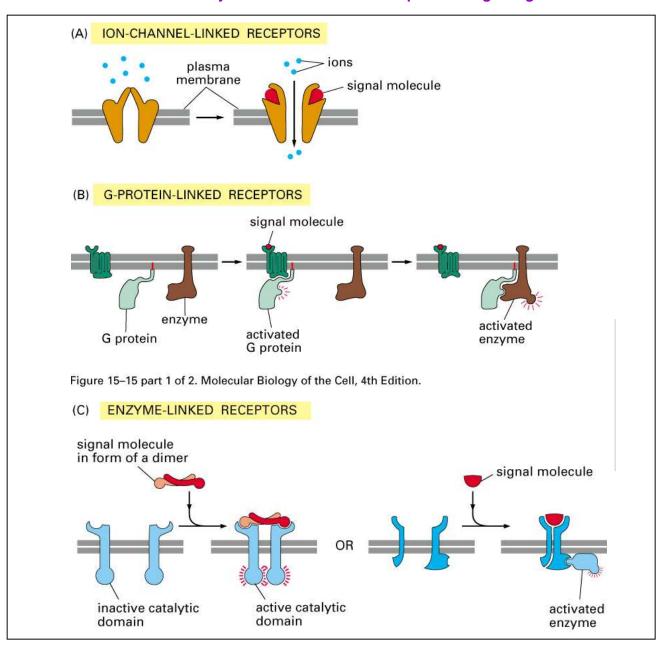
Ionotropic Receptors

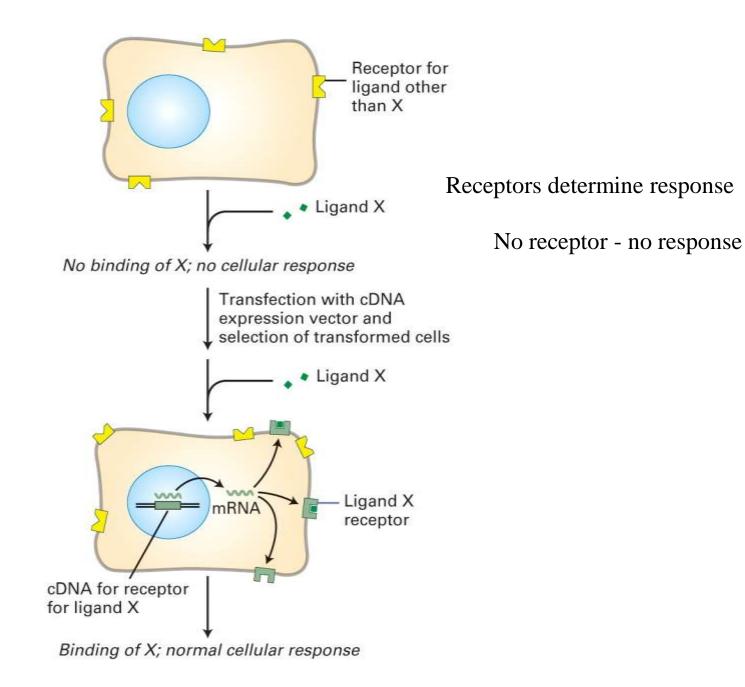

- Work very <u>fast</u>; important role in fast neurotransmission
- Each is made of several <u>subunits</u> (together form the complete receptor)
- 2. At center of receptors is <u>channel</u> or pore to allow flow of ions
- 3. At rest receptor channels are closed
- 4. When neurotransmitter binds -- channel immediately opens
- 5. When <u>ligand</u> leaves binding site -- channel quickly closes

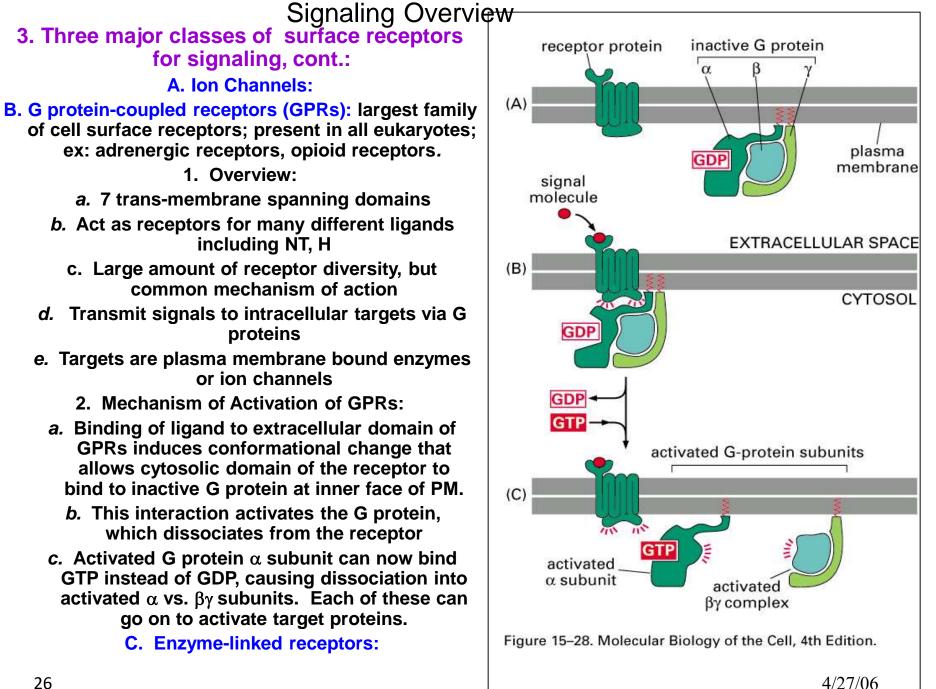
Metabotropic Receptors...


Work by activating other proteins called **G** proteins

- Each is made of several transmembrane regions
- 2. Stimulate or inhibit the opening of ion channels in the cell membrane
- Work more slowly than ionotrophic receptors but lasts longer




Metabotropic Receptors...


- Stimulate or inhibit certain effector enzymes
- Most effector enzymes controlled by G proteins are involved in synthesis of second messengers.
 - *First messenger: ligand.
 - *Second messenger:
 - effector enzyme

Signaling Overview 3. Three major classes of surface receptors for signaling :

