Bone Ossification

Dr. Heba Kalbouneh
Associate Professor of Anatomy and Histology
Pre-natal Ossification

Embryonic skeleton:

- fashioned from **fibrous** membranes or **cartilage** to accommodate mitosis.

- 2 types of pre-natal **ossification** (bone formation)

1. **Intramembranous**
 - Bone develops from fibrous membrane
 - Forms bones of skull and clavicle (most flat bones)
 - Contributes to the growth of short bones and thickening of long bones
 - Begins at 8 week of development

2. **Endochondral**
 - Bone develops from hyaline cartilage
 - Responsible for the formation of short and long bones
 - Begins 2nd month of development
Intramembranous Ossification
(prenatal)

Flat bone of skull
Intramembranous Ossification
(prenatal)

Mesenchymal cells create fibrous CT framework for ossification

Fibrous connective tissue membrane
Intramembranous Ossification
(prenatal)

Some mesenchymal cells differentiate into osteoblasts in an ossification center.

Osteoblasts secrete bone matrix, osteoid.
Intramembranous Ossification (prenatal)

Mineralization and calcification of osteoid

Trapped osteoblasts become osteocytes
Intramembranous Ossification (prenatal)

Several points of ossification occur and fuse forming spongy bone around embryonic blood vessels.

Mesenchyme on bone surface condenses and differentiates into periosteum.
Intramembranous Ossification (prenatal)

The woven bone at the outer edge is remodeled and replaced by compact bone.

Spongy bone (diploë), consisting of distinct trabeculae, persists internally and its vascular tissue becomes red marrow.

Note: Osteoblasts remain on bone surface to grow/remodel when needed.
An anatomical feature of the infant human skull comprising any of the soft membranous gaps (sutures) between the cranial bones of an infant

Fontanelles:
1. Allow room for the baby’s brain to grow
2. Enable the head to be compressed during delivery
Endochondral Ossification

1. Development of cartilage model

- Proximal epiphysis
- Hyaline cartilage
- Diaphysis
- Distal epiphysis

Perichondrium
Endochondral Ossification

Bone collar formed around diaphysis by osteoblasts located on inner side of perichondrium

The collar impedes diffusion of oxygen and nutrients to the underlying cartilage, promoting degenerative changes there
Endochondral Ossification

Primary ossification center

Cartilage calcifies, then the cells die and cavities form (cavitates)

Death of chondrocytes creates a porous structure consisting of Calcified cartilage remnants which become covered by a layer of osteoblast

Bone collar provides stability during cavitation

Cartilage elsewhere continues to elongate
Endochondral Ossification

Blood vessels from perichondrium (now the periosteum) penetrate through the bone collar, bringing osteoprogenitor cells to the porous central region.

Periosteal bud (lymph, blood vessels, nerves, red marrow, osteoblasts and osteoclasts) enters cavity and builds spongy bone.
Endochondral Ossification

Secondary Ossification Center forms in epiphysis

Osteoclasts **dissolve** spongy bone to create **medullary cavity**
Endochondral Ossification

Hyaline only remains on epiphyseal surface (articular cartilage) and at diaphysis and epiphysis junction, to form the epiphyseal plates.

Secondary Ossification Center
Endochondral Ossification
Postnatal Bone Growth

• Interstitial growth:
 – ↑ length of long bones

• Appositional growth:
 – ↑ thickness and remodeling of all bones by osteoblasts and osteoclasts on bone surfaces
Endochondral Ossification: the process by which most bones in the body grow.

Growing taller throughout childhood!
Growing Taller!
(A closer look at the epiphyseal plate)

Lots of activity!
Growing Taller!
(A closer look at the epiphyseal plate)

<table>
<thead>
<tr>
<th>Typical hyaline cartilage (resting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Resting zone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rapidly mitotic cartilage, lengthening bone; chondrocytes form columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>2- Growth zone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enlarging size of chondrocytes (hypertrophy), this hypertrophy compresses the matrix into thin septa between chondrocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3- Hypertrophy zone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix of cartilage calcifies and cells die forming small cavities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4- Calcification zone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osteoblasts adhere to the remnants of calcified cartilage matrix and produce woven bone. Later this bone reshapes into spongy bone or compact bone later as bone grows.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5- Ossification zone</td>
</tr>
</tbody>
</table>
Longitudinal Bone Growth

- Longitudinal Growth (interstitial) – cartilage continually grows and is replaced by bone
 - Bones lengthen entirely by growth of the **epiphyseal plates**
 - Cartilage is replaced with bone as quickly as it grows
 - *Epiphyseal plate maintains constant thickness*
When does lengthening stop?

• End of adolescence - lengthening stops
 – Chondrocytes stop mitosis.
 – Plate thins out and replaced by bone
 – Diaphysis and epiphysis fuse to be one bone
 • Epiphyseal plate closure (18 yr old females, 21 yr old males)

• Thickening of bone continuous throughout life
Appositional Bone Growth

- Growing bones widen as they lengthen
- Appositional growth – growth of a bone by addition of bone tissue to its surface
- Bone is resorbed at endosteal surface and added at periosteal surface
 - Osteoblasts – add bone tissue to the external surface of the diaphysis
 - Osteoclasts – remove bone from the internal surface of the diaphysis
Bone Remodeling

- **Reshaping of the skeleton during growth**
- **Maintain calcium levels**
- **Repair of microfractures caused by everyday stresses**

Involves:
- Dissolving/destroying bone
- New bone growth
Dissolved material passed through osteoclasts and into bloodstream for reuse by the body (endocytosis and transcytosis)
Bone Remodeling

• Bone Deposition
 – Occurs when bone is injured or extra strength is needed
 – Requires a healthy diet - protein, vitamins C, D, and A, and minerals (calcium, phosphorus, magnesium, manganese, etc.)

• Bone Resorption
 – Accomplished by **Osteoclasts** (multinucleate phagocytic cells)
 – Resorption involves osteoclast secretion of:
 • Lysosomal enzymes that digest organic matrix
 • HCl that converts calcium salts into soluble forms
 – Dissolved matrix is endocytosed and transcytosed into the interstitial fluid → the blood
To summarize:

– Bone formation—begins around 8th week of development
– Postnatal bone growth—until early adulthood
– Bone remodeling and repair—lifelong
Bone is Dynamic!

Bone is constantly remodeling and recycling

- Coupled process between:
 - Bone deposition (by osteoblasts)
 - Bone destruction/resorption (by osteoclasts)
- 5-7% of bone mass recycled weekly
- All spongy bone replaced every 3-4 years.
- All compact bone replaced every 10 years.

Prevents mineral salts from crystallizing; protecting against brittle bones and fractures
Bone growth regulated by hormones

- **Human Growth Hormone (HGH):** from pituitary gland in brain promotes epiphyseal plate activity
- **Thyroid hormones:** regulate HGH for proper bone proportions
- **Puberty:** Testosterone or Estrogen cause adolescent growth spurt and skeletal differences between the sexes:
 - Wider shoulders, larger bones, narrow pelvis in men
 - Wider hips, smaller upper body in women
- **Excesses in any hormones can cause abnormal skeletal growth**
 - Ex. gigantism or dwarfism
Robert Wadlow, world’s tallest man 8 ft 11 inches

Yao Defen, gigantess currently in treatment for pituitary tumor in China. 7 ft 7 inches 396 lbs
Response to Mechanical/Gravitational Forces

- Bones respond to muscles pulling on them (mechanical stress) and to gravity by keeping the bones strong where they are being stressed.

- Weight bearing activities \(\rightarrow\) stronger projections where muscles/ligaments attach

- High rate of bone deposition in specific areas.
What you don’t use, you lose. The stresses applied to bones during exercise are essential to maintaining bone strength and bone mass. Bones respond to muscles pulling on them (mechanical stress).
Clinical Application

Osteoporosis
Animations

http://depts.washington.edu/bonebio/ASBMRed/growth/newlongbone2.swf

http://depts.washington.edu/bonebio/ASBMRed/growth/newBMUbu.swf

http://highered.mheducation.com/sites/dl/free/0072495855/291136/BoneGrowth.swf

Recommended
http://www.johnwiley.net.au/highered/interactions/media/Support/content/Support/skel2a/frameset.htm

http://www.doitpoms.ac.uk/tlplib/bones/flash/EndochondralOssification.swf
A joint is where two or more bones meet. Also known as an articulation.

Joints can be classified either by:
- the tissue that holds the bones together
- or the degree of movement they provide

- **Synovial joints**: Permits free movement
- **Fibrous joints**: Limited or no movement
- **Cartilaginous joints**
Fibrous joints are connected by dense connective tissue and have no joint cavity.

Cartilaginous joints are connected by cartilage and have no joint cavity.

Synovial joints have a synovial, fluid-filled cavity that surrounds the articulating bones.

Synarthrosis: Joints that do not provide any movement.

Amphiarthrosis: Joints that only provide a small degree of movement.

Diarthrosis: Joints that allow free movement.
FIBROUS JOINTS
In a fibrous joint, the two bones are connected by dense fibrous connective tissue. These joints can be either synarthrotic or amphiarthrotic.

There are three different types of fibrous joints:

- **Suture**: between the flat bones of the skull
- **Gomphosis**: The roots of a tooth and the alveolar sockets in the maxilla or mandible
- **Syndesmosis**: interosseous membrane
Sutures

Sutural ligament

These joints are synarthrotic
Gomphoses occur only between the teeth and adjacent bone. In these joints, short collagen tissue fibers in the periodontal ligament run between the root of the tooth and the bony socket.

These joints are synarthrotic
Syndesmoses

These joints are amphiarthrotic
CARTILAGINOUS JOINTS
In a cartilaginous joint, the two bones are connected by cartilage. These joints can be either synarthrotic or amphiarthrotic.

There are two types of cartilaginous joints:

Synchondroses: growth plate

Symphyses: intervertebral joints, symphysis pubis

- Hyaline cartilage
- Fibrocartilage
Intervertebral joints

Symphyses mostly occur in the midline

Symphysis pubis
Synovial joints are most commonly found throughout the limbs.

In order for the joint to be classified as synovial:

✓ Both adjacent bones participating in the joint must be lined with **hyaline cartilage (articular cartilage)**
✓ The joint is encompassed in a **capsule** that encases the joint cavity.
✓ The interior of the capsule is lined with a **synovial membrane** that is responsible for producing and secreting **synovial fluid**
✓ **Synovial fluid** lubricates the joint, which aids in reducing the friction between the bones’ ends as they articulate with each other
✓ Further reinforcement of the capsule is provided by **ligaments, tendons** and **skeletal muscle**
Gliding (plane) Joint
Example: shoulder and hip joints

Hinge Joint
Example: elbow and knee joints

Pivot Joint
Example: atlanto-axial joint

Saddle Joint

Ball and Socket Joint
Example: shoulder and hip joints
Ellipsoid Joint:
Example: wrist joint