

Molecular Biology (1)

DNA structure and basic applications

Mamoun Ahram, PhD Second semester, 2018-2019

Resources

- This lecture
- Cooper, pp. 49-52, 118-119, 130

Nucleic acids

- 2 types:
 - Deoxyribonucleic acid (DNA)
 - Ribonucleic acid (RNA)

What is molecular biology?

Central dogma of molecular biology

Nucleic acids

- The primary structure of nucleic acids is linear polymers of nucleotides (monomers) bound to each other via phosphodiester bonds.
- DNA is coiled and can be associated with proteins forming chromosomes.

Chemical composition and bonds

- Positively charged ions (Na+ or Mg2+) and peptides with positively charged side chains can associate with DNA
- Eukaryotic DNA, for example, is complexed with histones, which are positively charged proteins, in the cell nucleus.

Nitrogenous bases

Cytosine (in DNA & RNA)

Thymine (in DNA & some RNA)

Uracil (in RNA)

$$\begin{array}{c|c} & NH_2 \\ & & \\ & & \\ N & & \\ & & \\ N & & \\ &$$

Guanine (in DNA & RNA)

In prokaryotes and eukaryotes

not viruses

Nucleotides vs. Nucleosides

Nucleotides vs. Nucleosides

Nucleotide:

Deoxyadenylate (deoxyadenosine

5'-monophosphate)

Symbols: Nucleoside: A, dA, dAMP

Deoxyadenosine

Deoxyguanylate (deoxyguanosine 5'-monophosphate)

> G, dG, dGMP Deoxyguanosine

Deoxythymidylate (deoxythymidine 5'-monophosphate)

> T, dT, dTMP Deoxythymidine

Deoxycytidylate (deoxycytidine 5'-monophosphate)

> C, dC, dCMP Deoxycytidine

(a) Deoxyribonucleotides

Nucleotide:

Adenylate (adenosine 5'-monophosphate)

Symbols: Nucleoside:

A, AMP Adenosine

Guanylate (guanosine 5'-monophosphate)

G, GMP

Guanosine (b) Ribonucleotides

Uridylate (uridine 5'-monophosphate)

> U, UMP Uridine

Cytidylate (cytidine 5'-monophosphate)

> C, CMP Cytidine

Nucleic acid polymers

- A letter d can be added to indicate a deoxyribonucleotide residue.
 - for example, dG is substituted for G.
 - The deoxy analogue of a ribooligonucleotide would be d(GACAT).

DNA structure

- A double helix
- Specific base-pairing
 - Θ A = T; G = C; Pur = pyr
- Complementary
- Backbone vs. side chains
- Antiparallel
- Stability vs. flexibility
- Groovings

Chargaff's rules

Base pairing

DNA is complementary

Backbone vs. side chains

DNA is anti-parallel

2001 Benjamin Cummings, an imprint of Addison Wesley Lor

Sequence of nucleic acids


```
DNA 3'...TACCGGACCTGAAGT... 5'
```

OR ATGGCCTGGACTTCA.

RNA 5' ... AUGGCCUGGACUUCA... 3'

DNA is flexible, yet stable

DNA grooves

Prokaryotes versus eukaryotes

In eukaryotes...

- In eukaryotes, DNA is coiled to package the large DNA.
- Eukaryotic DNA is complexed with a number of proteins, principally histones, which package DNA.
- Chromatin = DNA molecule + proteins.

Nucleosomes

- The histone protein core is an octamer (two molecules of histones H2A, H2B, H3, and H4).
- A linker DNA/spacer region connects the octamer-DNA complexes.
- A nucleosome consists of DNA wrapped around a histone core.
- H1 is bound to the the octamer and wrapped DNA (a chromatosome).
- Histones are positively charged facilitating DNA interaction and charge neutralization.

Histone package chromosomes

Remember...we are diploid

Haploid (n)

One copy of each chromosome

Three non-homologous chromosomes

Diploid (2n)

Two copies of each chromosome

Three pairs of homologous chromosomes (of maternal and paternal origin)

Light absorbance of nucleic acids

- Aromatic pyrimidines and purines can absorb UV light
- The peak absorbance is at 260 nm wavelength

- The absorbance of nucleic acids at 260 nm (A260) is constant
 - dsDNA: A260 of 1.0 = 50 ug/ml

Reason for ss vs. ds absorbance:

Unstacked bases vs. stacked bases

What is the concentration of a double stranded DNA sample diluted at 1:10 and the A260 is 0.1?

DNA concentration = $0.1 \times 10 \times 50 \mu g/ml$ = $50 \mu g/ml$

Observation of denaturation

- The transition temperature, or melting temperature (Tm).
- Factors influencing Tm
 - Length
 - G·C pairs
 - Hydrogen bonds
 - Base stacking
 - pH
 - Salts and ions
 - Destabilizing agents (alkaline solutions, formamide, urea)

RNA

- It consists of long, unbranched chains of nucleotides joined by phosphodiester bonds between the 3'-OH of one pentose and the 5'-PO₄ of the next.
- \bullet The pentose unit is β-D-ribose (it is 2-deoxy-D-ribose in DNA).
- The pyrimidine bases are uracil and cytosine (thymine and cytosine in DNA).
- In general, RNA is single stranded (DNA is double stranded).

RNA does not have a precise structure, but it can fold on itself forming hydrogen bonds within the same molecule.

Types of RNA

Non-coding RNA	Length (nt)	Species	Function
Ribosomal RNA (rRNA)	120~4700	All	Translation
Transfer RNA (tRNA)	70~100	All	Translation
Small nuclear RNA (snRNA)	70~350	Eukaryote	Splicing, mRNA processing
Small nucleolar RNA (snoRNA)	70~300	Eukaryote, archaea	RNA modification, rRNA processing
miRNA —	21~25	Eukaryote	Translational regulation
siRNA Small ncRNA	21~25	Eukaryote	Protection against viral infection
piRNA	24~30	Eukaryote	Genome stabilization
Long ncRNA	several hundreds~ several hundred thousa	Eukaryote ands	Transcription, splicing, transport regulation

Gel electrophoresis

The length and purity of DNA molecules can be accurately determined by the gel electrophoresis.

Resources

- http://www.personal.psu.edu/pzb4/electrophoresis.sw
 <u>f</u>
- http://www.sumanasinc.com/webcontent/animations/ content/gelelectrophoresis.html
- http://www.sumanasinc.com/webcontent/animations/ content/gelelectrophoresis.html

Detection

- The DNA molecules of different lengths will run as "bands".
- Each bands contains thousands to millions of copies of DNA fragments of the same length. They can be of same or different type (not one DNA molecule).
- DNA is stained (that is, colored) with a dye (ethidium bromide) or radioactively labeled (32P).
- It is common that a DNA standard is used to determine the length of the examined DNA molecule.

bp: base pair

DNA staining

DNA Labeling

Denaturation versus renaturation (hybridization)

Hybridization

- DNA from different sources can form double helix as long as their sequences are compatible (hybrid DNA).
- Hybridization can be imperfect.

Hybridization techniques

- Hybridization reactions can occur between any two single-stranded nucleic acid chains provided that they have complementary nucleotide sequences
- Hybridization reactions are used to detect and characterize specific nucleotide sequences

Probes

- A probes is a short sequence of single stranded DNA (an oligonucleotide) that is complementary to a small part of a larger DNA sequence.
- Hybridization reactions use labeled DNA probes to detect larger DNA fragments.

Hybridization can be non-specific


```
CTCCTGTGGAGAAGTCTGC
|||||||||||||||
... CGTGGACTGAGGACACCTCTTCAGACGGCAATGAC ...

CTCCTG<sup>T</sup>GGAGAAGTCTGC
|||||| |||||||||
... CGTGGACTGAGGACTCTCTTCAGACGGCAATGAC ...
```

Hybridization can be controlled by changing the temperature, ionic strength of solutions, GC content, etc.

Dot blot

- This is a technique that informs us if a specific sequence that is complementary to a probe of a known sequence exists in a larger DNA.
- DNA is bound to a solid support and a labeled probe is added. If binding occurs, the sequence exists.

Concepts to know...

Pedigree
Allele
Dominant vs. recessive
Oligonucleotide

Disease detection by ASO (Cystic fibrosis)

ASO: Allele-specific oligonucleotide

The whole genomic DNA is spotted on a solid support (like a nylon membrane) and hybridized with two ASO's, one at a time.

Southern blotting

- This technique is a combination of DNA gel electrophoresis and hybridization
- Used to detect:
 - the presence of a DNA segment complementary to the probe
 - the size of the DNA fragment

