THE UNIVERSITY OF JORDAN PHYSICS 105 (2nd EXAM)

B) 50 E) 402

A) 803

D) 201

PHYSICS DEPARTMENT SECOND SEMESTER (April. 26th, 2018)

5 cm

20 cm

5 kg

2 kg

Lecturer's Nan	ne:		Section #						
$g = 9.8 \text{ m/s2}$, 1 atm = 1.013 × 10 ⁵ Pa, $\rho_{\text{water}} = 1000 \text{ kg/m}^3$									
	value of the coeffic		aclined plane at constant μ_k between the block	Marie 1					
A) 0	B)0.58 C) 1.7	73 D) 0.87	E) 0.5	300					
	of masses M_a and then the speed of r		ame kinetic energy. If t	he speed of					
A) <i>V</i>	B) 2 <i>V</i>	\bigcirc $\sqrt{2}V$	$D)\frac{1}{\sqrt{2}}V$	$E)\frac{1}{2}V$					
	arts with an initial sp	seed $v_0 = 10$ m/s at the	bottom of a						
distance of 6 m coefficient of k	n along the plane bef kinetic friction is:	plane as shown. The ski	value of the	300					
distance of 6 m coefficient of k A) 0.17	along the plane befine the final structure of the plane before the first the plane before t	ore coming to rest. The							
distance of 6 m coefficient of k A) 0.17 Q4) A 70-kg a	along the plane befine the final structure of the plane before the first the plane before t	ore coming to rest. The	value of the E) 0.91						
distance of 6 m coefficient of k A) 0.17 Q4) A 70-kg a power output (A) 823 Q5) The figure	a along the plane befine the fine tickinetic friction is: B) 1.55 C) thlete in basic training in W) is: B) 85.8 e shows a uniform begular to the page and	0.70 D 0.40 ng climbs a 10-m vertica C) 840 eam fixed at its midpoint	E) 0.91	of 1.2 m/s. His E) 0					
distance of 6 m coefficient of k A) 0.17 Q4) A 70-kg a power output (A) 823 Q5) The figure axis perpendic	a along the plane befine the fine tickinetic friction is: B) 1.55 C) thlete in basic training in W) is: B) 85.8 e shows a uniform begular to the page and	0.70 D 0.40 ng climbs a 10-m vertica C) 840 eam fixed at its midpoint	E) 0.91 E) 0.91 D) 686 at O. The beam can only re	of 1.2 m/s. His E) 0					

C) 105

kg) that me placed	at is pivo akes an 13.0 m f	oted at the	e wall at 51° with pivot. De	point On the hori	, with its izontal. I	m (length far end s f a load (zontal co	supporte mass = (d by a ca	ble	3 m	mbus s	51%
A) 29	8	B) 189	9	C) 264	(1	0)242		E) 150	0	msV and	i.ectur	1
		f iron is			ersed in	water and	l is sinki	ng below	the wat	er surfac	e. Which	h
B) The C The D) The	e buoyar e buoyar e buoyar	nt force a	cting on cting on loes not	it decreated it is condepended	ases as the	ne block s ne block s the block ensity of t	sinks. sinks.		Page 8			
weigh	t (in N)	is filled of a load e buoyan	that can	be lifted	d using th	as ($ ho_{He}$ = nis balloc	= 0.179 on is: (ig	kg/m³, ρ nore the	mass of	29 kg/m³ the skin o). The of the	
(A) 10	89		B) 11		C)	111		D) 1880	o l		E) 100	00
additi						nen a load eight (in						
A) 24	600		B) 9	643	na ste	C) 1025		D) 24108		E) 94	10
						m ² and b is: (Ass			_			5
A) 0.1	1,	800	B) 10	0	(84.7		D) 8470		E) 105	59
diame cm/s	eter. At the	he base o	of the bu pressure	ilding (g	round le	igh build vel) the v gauge pre	vater flo	ws into t	he pipe a	t a speed	of 60	s:
A) 0			B) 1.5	4		C) 2.65			1.65		E) 3	.2
Listy	our fina	al answe	rs in thi	s table.	Only the	answer	in this t	table wil	l be gra	ded		
Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	
Final Answer	B	C	D	A	E	E	0	C	A	B	C	

Physics for Medical Students (0342105)/second Exam Solutions April /26/2018

PIJ+ mgsin30-fk = ma mgsin30 - Mk (mgcos30) =0 :. Mk = tan30°

 $\Phi_2^2 = K_b \Rightarrow \frac{1}{2} M_a V_a^2 = \frac{1}{2} M_b V_b^2$:. $M_a V_a^2 = (2M_a) V^2 \Rightarrow V_a^2 = 2V^2 \Rightarrow V_a = 12V$

Q3] Wnc = AK+DU fx (d) cos 180° = (0-1 m(vo)) + mgh - Mk(mg cosso) (d) = - 1 mv + mg (d sinso)

: $\mu_k = \frac{g \, d \sin 30 + v_0^2/2}{-g \, d \cos 30} = 0.40$

04] P = total work down = (mg)(h) = mg(h) = mgv = 823 W

Q5) The only gaph for which IT =0 and I forces =0

96] + 5) Fy (0.05) - 29 (0.15) - 59 (0.35) = 0 $F_{\text{M}} = \frac{29(0.15) + 59(0.35)}{0.05} \approx 402 \text{ N}$