## THE UNIVERSITY OF JORDAN

## PHYSICS DEPARTMENT

## PHYSICS 105 (First Exam)

First Semester (October. 30th, 2017)

| Student's Na                                               | nme (Arabic):                                    |                                                | Registration #                                          | 1015.(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecturer's N                                               | ame:                                             |                                                | Section #                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *CONSIDE                                                   | R (ACCELERATIO                                   | ON DUE TO GRAV                                 | $y(TTY) g = 9.8 \text{ m/s}^2$                          | MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q1) The pos<br>What is the a                               | ition of an object (in average velocity of th    | m) is given as a func<br>e object (in m/s) bet | ection of time (in s) as $x(t) = 0.0$ s and $t = 0.0$ s | $t (3.0)t + (2.0)t^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A) 7.0                                                     | B) 13                                            | C) 27                                          | D) 9.0                                                  | E) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| When the st<br>A) char<br>B) is ze<br>C) is di<br>D) is di | tone is at the top of nges direction from        | its path, its acceler                          | a highest point and returnation wards.                  | ns to the ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The car then                                               | slows to a stop unifor hole time period (in n    | rmly in 5.00 seconds                           | m with an acceleration of 2 s. The distance traveled by | 2.0 m/s <sup>2</sup> .<br>the car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A) 36.8                                                    | B) 42.4                                          | C) 50.1                                        | D) 58.3                                                 | E) 64.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q4) A ball is<br>ball starts at<br>air?                    | thrown vertically up<br>an initial height of 3.5 | wards with a speed of m, how long (in s)       | of 12 m/s. If the the ball is in the                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A) 3.3<br>D) 2.7                                           | B) 1.5<br>E) 0.41                                | C) 6.6                                         | eep the mass M etationary.<br>B) 29                     | 3.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                            | arts from the origin areast. What is the car's   |                                                | th, then 3.1 km in a direction to the origin?           | on N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                            | st<br>st and 1.3 km north<br>st and 0.3 km north |                                                | st and 1.2 km south<br>st and 2.5 km north              | W <b>∢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OG) Vastans                                                | A and R are represent                            | ted as shown in the f                          | figure.                                                 | v and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| What is the a                                              | ngle of their resultant                          |                                                | positive                                                | The year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| What is the a x-axis?                                      | ngle of their resultant                          | with respect to the                            | positive                                                | TO setten of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| What is the a                                              | -                                                |                                                | positive                                                | The section of the se |



## Physics (0342105)/First Exam 30th OCT /2017 Sample Solutions / Prof. Mahmoud Jaghoub

$$QI$$
  $V_{0-3} = \frac{x_f - x_i}{t_f - t_i} = \frac{x(3) - x(0)}{3 - 0} = \frac{27 - 0}{3} = 9 \text{ m/s}$ 

02] D) acceleration is directed downwards.

Note: Gravitational acceleration is always towards the center of the earth (downwards) independent of the direction of motion.

 $\Delta X_1 = 20 \,\text{m}$ ,  $q = 2 \,\text{m/s}^2$  in first phase of motion,  $U_1 = 0$  $\Delta X_2 = ?$  in second phase of motion,  $t = 5 \,\text{s}$ .

Note: we have two different phases of motion.

phase 1: ( ) = 20 DX, = 1 = 12x2x20 = 45 m/s

phase 2: DX2 = 1 (V: + Vf) t

Note: U2: = Uf = 415 m/s, U2f =0

⇒ DX2 = \( \frac{1}{2} \left( 4/5 + 6 \right) (5 \right) = 22.4 M

=> Total displacement DX = DX, + DX2 = 20 + 22.4 = 42.4 m

 $y_{f} - y_{f} = 0; t - \frac{1}{2}gt^{2}$   $0 - 3.5 = 12t - 4.9t^{2}$   $4.9t^{2} - 12t - 3.5 = 0$   $t = \frac{12 \pm \sqrt{(-12)^{2} - 4(4.9)(-3.5)}}{2(4.9)}$  t = 2.7 s

Q5] Resolve both displacements into components.

$$d_{1x} = 0$$
,  $d_{1y} = -2.2 \text{ km (North)}$ 
 $d_{2x} = 3.1 \cos 53^{\circ} \approx 1.9 \text{ km (East)}$ 
 $d_{2y} = 3.1 \sin 53^{\circ} \approx 2.5 \text{ km (North)}$ 

$$dry = 3.1 \sin 53 \approx 2.5 \text{ km (No}$$

$$R = J_1 + J_2$$

$$R_{x} = 1.9 \text{ km (East)}$$

$$R_{y} = 0.3 \text{ km (Noith)}$$

$$\frac{1}{\sqrt{3}}$$
  $x = \frac{1}{\sqrt{53}}$ 

$$\begin{array}{ll}
\varphi 6 & \overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B} \\
R_{x} = A_{x} + B_{x} & R_{y} = A_{J} + B_{y}
\end{array}$$

$$Ax = 4$$
,  $Ay = 0$   
 $Bx = 5 \cos 50^{\circ} = -5 \cos 30^{\circ} = -2.5 \sqrt{3}$ 

$$B_{\rm X} = 5 \cos 500$$
 $B_{\rm Y} = 5 \sin 50^{\circ} = 5 \sin 30^{\circ} = 2.5$ 

$$\Rightarrow R_{x} = 4 - 2.5 \vec{3} \approx -0.33$$
 $R_{y} = 2.5$ 

$$tand = \left| \frac{2.5}{-0.33} \right| = \frac{2.5}{6.33}$$
 $X = 82.4^{\circ}$ 



D= 180°- × ≈ 98°

98 For m2: \$ m29-T = m29 - 1 for m,: →+ T - fk = m,a - 2  $0+0 \Rightarrow m_2 g - f_k = (m_1 + m_2) q$ mrg - Mk (m,g) = (m,+mr) 9  $Q = \frac{m_2 g - M_R(m_1 g)}{m_1 + m_2} \sim 6.4 \text{ m/s}^2$  $W_{Total} = DK = \frac{1}{2}(0.52)(0 - (60)^3) = +936 J$ . Q10] m1=3kg, m2=14 kg For Mi: DYO + m,g-M= m,a N2 A VNI m2 m2 NI = mig - mia = mi(g-a) = 18.9 Newton = 19 Newton maximum possible value of firetion is figurex for block to remain stationary =>
Mg must NOT exceed framex. P11 friction in ts, max > Mg Sur block to remain stationary MsN>, Mg => Ms(F)> Mg :. F) Mg => F> 4x9.8 => Fmin = 196 Newton W = (F Sin 60) (60) Fsin60 ons # 2598 J.