THE UNIVERSITY OF JORDAN

PHYSICS DEPARTMENT

PHYSICS 105 (First Exam)

Second Semester (12/3/2018)

Student's Name (A	rabic):	Registr	ration #	MATERIAL STATES
_ecturer's Name:		Section	n#	Xezs (a
CONSIDER (ACC	CELERATION DUE T	O GRAVITY) $g = 9$.8 m/s ²	
Q1) Two objects wabove the ground.	with masses $M_A = M$ and Ignoring air resistance,	$M_B = 2M$ are release which of the following	d from rest at the same g statements is correct	e height h
B) M _A reaches the	ground before M _A . ground before M _B . ch the ground at the same the same speed just be D are correct.	ne time. efore hitting the groun	the coefficient of ld	OP) In the figure the control of the secoloration
$x = t^2 + t - 2, W$	along the x - direction su where x is in meters and the interval $t = 1$ to 3 seco	t in seconds. The aver	a function of time is grage velocity (in m/s) of	given by of the
A) 3	B) 10	C) 0	D) 5	E) 3
Q3) A car is movi and stops after mo	ng at a constant velocity oving a distance D. If the	v. Upon applying the initial velocity is 21	e brakes the car decele the stopping distance	erates uniformly becomes:
A) 2D	B) 4D	C) D	D) 6D	E) 0.5D
Q4) A stone is thr The time (in s) it t	own vertically upward vakes the stone to reach	with a speed of 18 m/s the bottom of the cliff	s from the edge of a cl	iff 60 m high.
A) 2.1	B) 28.4	C) 18.2	D) 9.6	E) 5.8
Q5) A man starts and moves 12 m a	from the origin and wal along the negative x –ax	ks 20 m along the posis. If the time of the	sitive x – axis. He then whole trip is 6 s, then	turns around his average
speed (in m/s) is				
speed (in m/s) is A) 5.3	B) 1.3	C) 3.3	D) 0	E) 2.0
speed (in m/s) is A) 5.3 Q6) Vectors A ar	B) 1.3 and B are represented as strespect to the positive x-	shown in the figure. V	Vhat is the angle of the	
speed (in m/s) is A) 5.3 Q6) Vectors A ar	nd B are represented as s	shown in the figure. V		

10.0 N 25.0 N	B) 16.3 N E) 17.2 N		C) 2.2		$F \longrightarrow M$	m
) In the fig $\mu_s = 0.4$,	ure mass m = 2 $\mu_k = 0.2 \text{ resp}$	kg and the co	efficients of sta acceleration (in	tic and kinetic fric m/s ²) of mass m i	tion m	7
0.64	B) 0	C) 9.8	D) 1.3	E) 2.0		15°
rizontal sur	gure the coeffice face is $\mu_k = 0$. on of the system	10 and $m_1 = 4$	friction betwee 0.0 kg , $m_2 = 2.0 \text{ kg}$	n the mass m_1 and kg. As m_2 moves	the down,	
2.6	B) 3.3	C) 9.8	D) 7.8	E) 0	gnote and	ali
ugh horizon	ntal surface Th	e force nushes	s the box a dista	applied to a 20-kg	time interval of	4.0 3,
ugh horizond the speed +960	ntal surface. The discharges from B) +	e force pushes $v_i = 0$ to v_f	s the box a dista	applied to a 20-kg nce of 8.0 m, in a york done (in J) by	time interval of	etion is
ugh horizon of the speed 1 +960 1 -960 The figure axis. The	ntal surface. The discharges from B) + E) - gure shows the fine mass starts fi	e force pushes $v_i = 0$ to v_f 870 Force F_x that a rom the origin	s the box a dista = 3 m/s. The w C) -90 cts on a 2 kg ma	nce of 8.0 m, in a	the force of fric	etion is
ugh horizond the speed 1 +960 11) The figure x-axis. The	ntal surface. The discharges from B) + E) -	e force pushes $v_i = 0$ to v_f	s the box a dista = 3 m/s. The w C) -90 cts on a 2 kg ma	york done (in J) by F ass moving along	the force of fric	etion is
ugh horizon d the speed 1 +960 11) The figure x-axis. The final speed 1 + 10 11) 5.2 12) In the figure x-axis are x-axis. The x-axis are x-axis are x-axis. The x-axis are x-axis are x-axis. The x-axis are x-axis. The x-axis are x-axis are x-axis. The x-axis are x-axis are x-axis are x-axis. The x-axis are x-axis are x-axis are x-axis. The x-axis are x-axis are x-axis are x-axis are x-axis are x-axis are x-axis. The x-axis are x-axis	B) + E) - gure shows the fine mass starts find (in m/s) at x = B) 4.2 E) 6.1 figure shown the fine coefficients olders m and M	e force pushes $v_i = 0$ to v_f 870 870 Force F_x that a rom the originary of the horizontal sets of static and M are $\mu_S = 0$.	cts on a 2 kg ma with an initial of the control of	ass moving along velocity of 3 m/s. The same of 8.0 m, in a second of a moving along along along velocity of 3 m/s.	the force of frice $F_{x}(N)$ $G_{y}(N)$ G	etion is

Answer

The University of Jordan Physics Dept. First Exam Solutions / Physics Pur Medical Students (105) Solutions by Prof. Mahmoud Jaghoub / 12/3/2018 PI) Both masses started from rest at the same height and the have the same gravitational acceleration => the reach the ground at the same time with the same velocity. Q2] $\overline{U}_{1-3} = [9+3-2]-[1+1-2] = 5 m/s$ $(93) \quad v_{t}^{2} - v_{i}^{2} = 2abX \Rightarrow 0 - v_{i}^{2} = -2|a|bX$ for deceleration $9-69=18t-4.9t^2 \Rightarrow 4.9t^2-18t-60=0$ $t = 18 \pm (18)^2 - 4(4.9)(-60) \Rightarrow t \sim 5.85$ (ignore negative answer) 05] total distance = 20 + 12 = 32 m.

S = total distance = 32 = 5.3 m/s

total hime using @ P = Mk (4g) + 4a P = 10 Newtons

