Signal Transduction

Lect 3 Ebaa M Alzayadneh, PhD

• Membrane receptors

Membrane Glycoprotein

 \sim

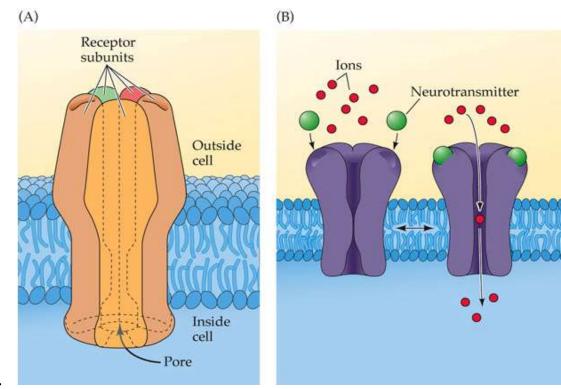
• Intracellular receptors

Cytosol or nuclei DNA binding protein

University of Jordan

Receptors superfamilies:

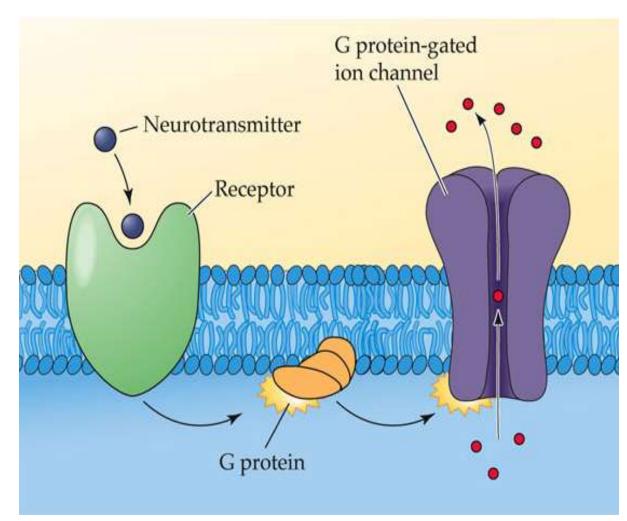
- Ionotropic receptors (ligand-gated channels)
- Metabotropic receptors (G protein-coupled receptors)
 Tyrosine Kinase


Channe at a starting	1		
Characteristics	lonotropic receptors	Metabotropic receptors	
Structure	4 or 5 subunits that assemble in the cell membrane	1 subunit	
Mechanism of action	Contain an intrinsic ion channel that opens in response to neuro- transmitter or drug binding	Activate G proteins in response to neurotrans- mitter or drug binding	
Coupled to second messengers?	No	Yes	
Speed of action	Fast	Slower	

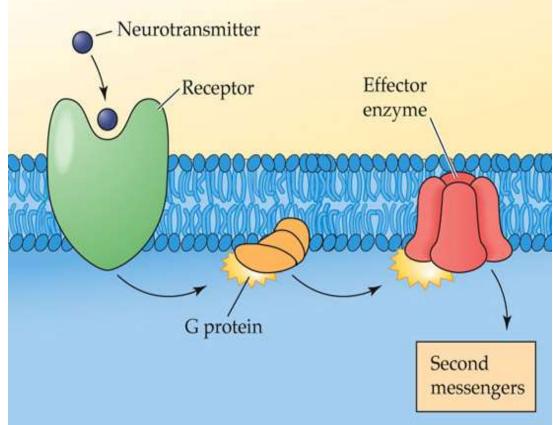
Comparison of Ionotropic and Metabotropic Receptors

Almost all neurotransmitters discovered so far have more than one kind of receptor -- called **receptor subtypes.**

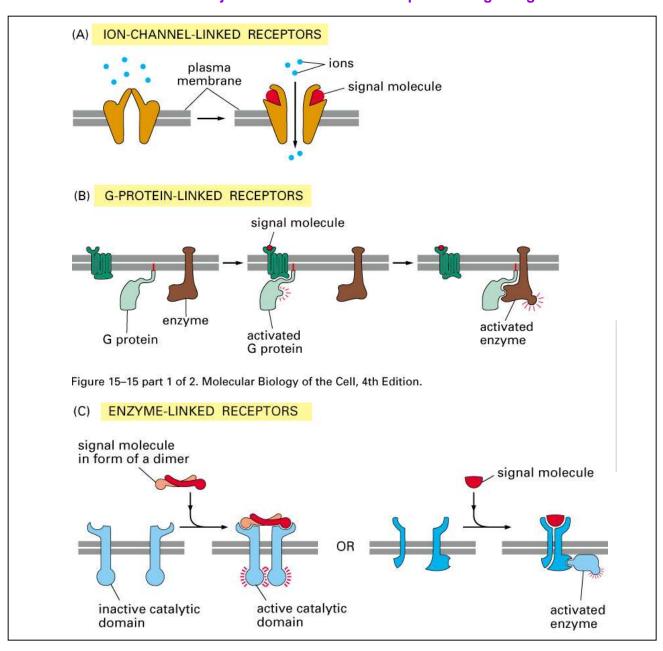
Ionotropic Receptors

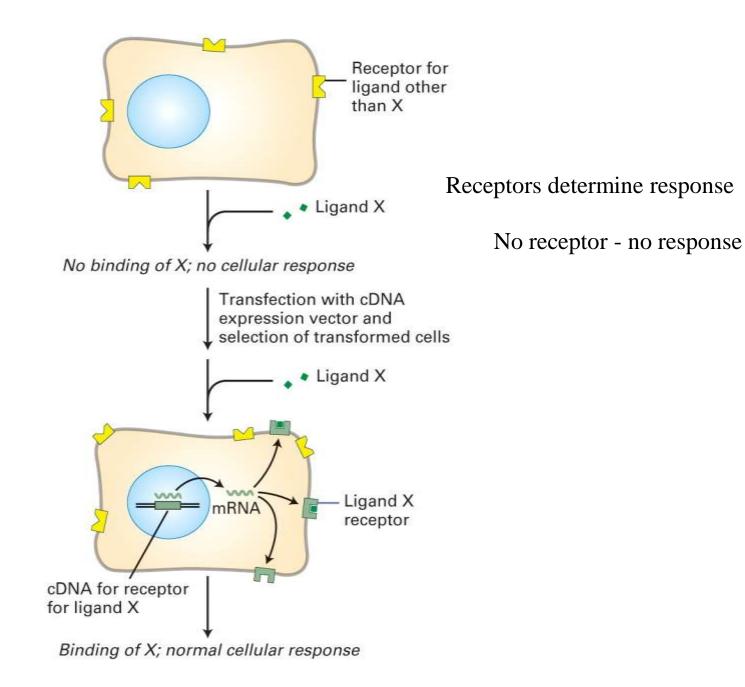

- Work very <u>fast</u>; important role in fast neurotransmission
- Each is made of several <u>subunits</u> (together form the complete receptor)
- 2. At center of receptors is <u>channel</u> or pore to allow flow of ions
- 3. At rest receptor channels are closed
- 4. When neurotransmitter binds -- channel immediately opens
- 5. When <u>ligand</u> leaves binding site -- channel quickly closes

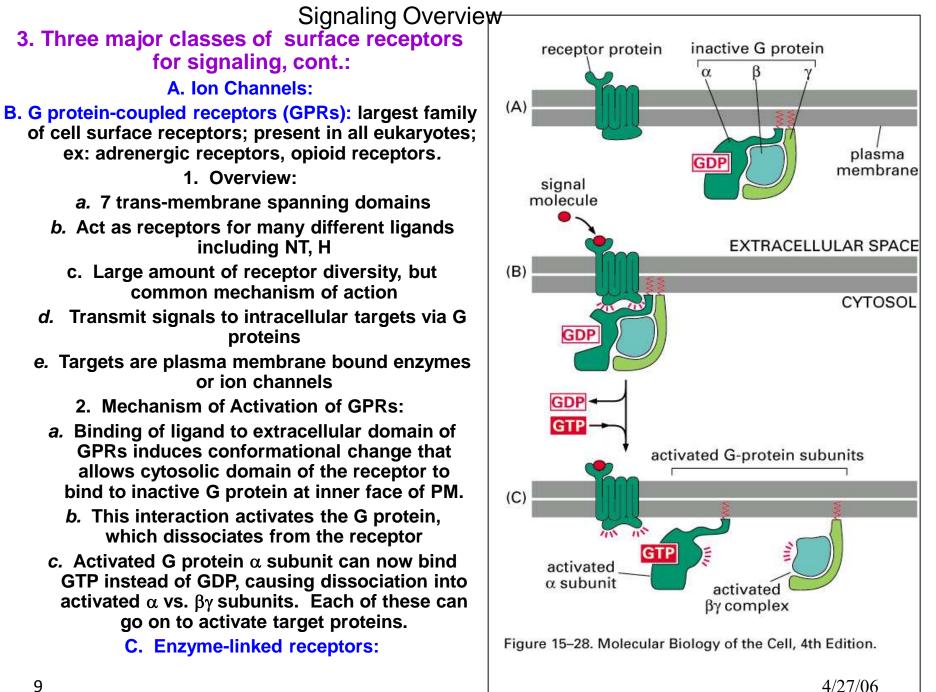
Metabotropic Receptors...

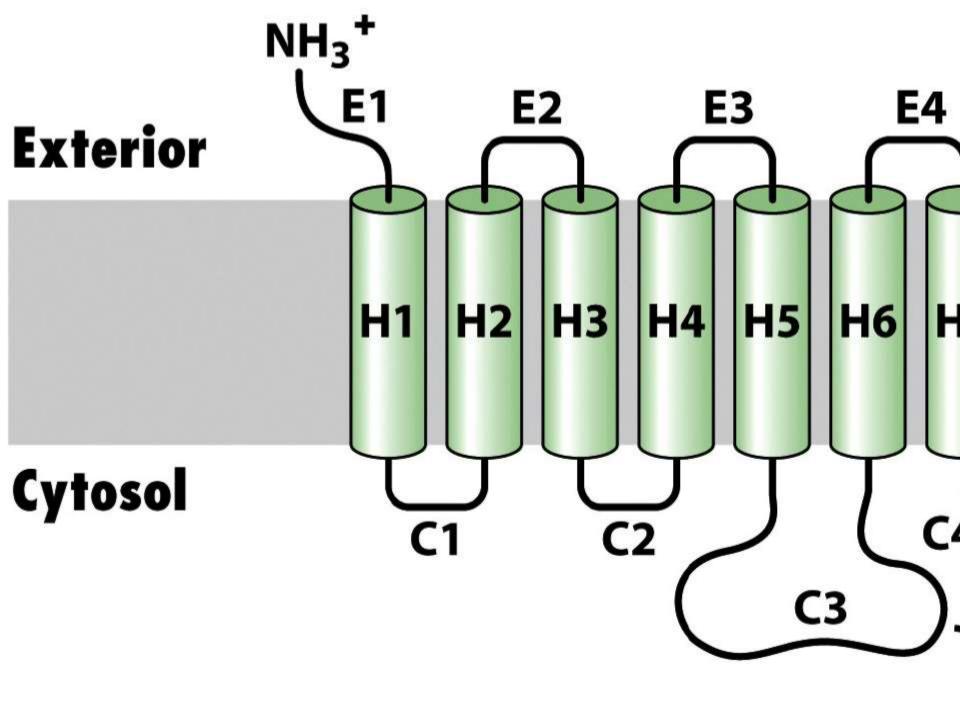

Work by activating other proteins called **G** proteins

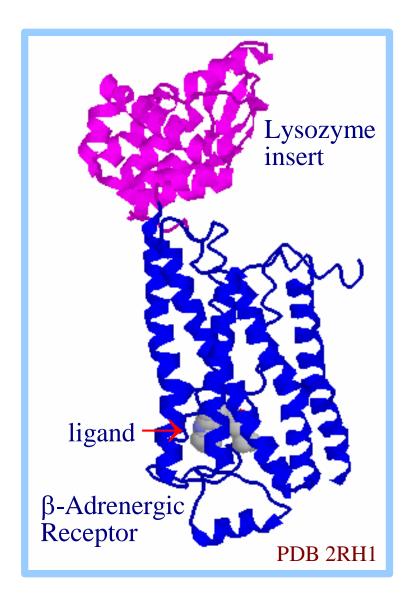
- Each is made of several transmembrane regions
- 2. Stimulate or inhibit the opening of ion channels in the cell membrane
- Work more slowly than ionotrophic receptors but lasts longer

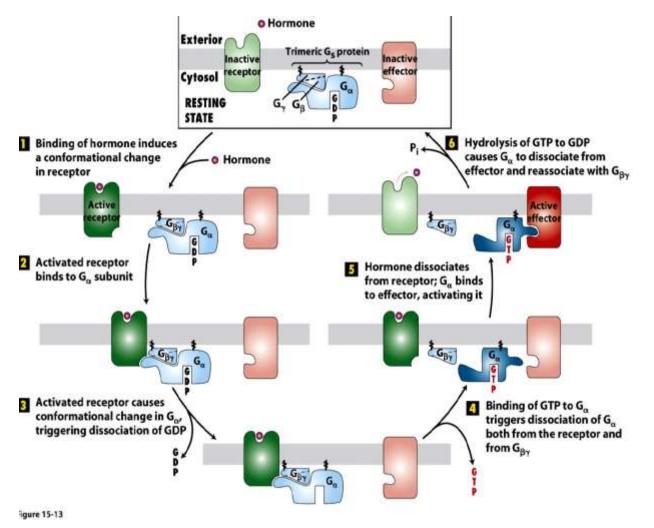



Metabotropic Receptors...


- Stimulate or inhibit certain effector enzymes
- Most effector enzymes controlled by G proteins are involved in synthesis of second messengers.
 - *First messenger: ligand.
 - *Second messenger:
 - effector enzyme




Signaling Overview 3. Three major classes of surface receptors for signaling :



The **signal** is usually passed from a **7-helix receptor** to an intracellular **G-protein**.

- Seven-helix receptors are thus called GPCR, or G-Protein-Coupled Receptors.
- Approx. 800 different GPCRs are encoded in the human genome.

- **G-proteins** are **heterotrimeric**, with 3 subunits α , β , γ .
- A G-protein that activates cyclic-AMP formation within a cell is called a stimulatory G-protein, designated G_s with alpha subunit G_{sα}.
- G_s is activated, e.g., by receptors for the hormones epinephrine and glucagon.

The β -adrenergic receptor is the GPCR for epinephrine.

Major Classes of Mammalian Trimeric G Proteins and Their Effectors* TABLE 15-1

$\mathbf{G}_{\mathbf{q}}$ CLASS	ASSOCIATED EFFECTOR	2ND MESSENGER	RECEPTOR EXAMPLES	
G _{as} Adenylyl cyclase		cAMP (increased)	β-Adrenergic (epinephrine) receptor; receptors for glucagon, serotonin, vasopressin	
G _{ai}	Adenylyl cyclase K ⁺ channel (G _{βγ} activates effector)	cAMP (decreased) Change in membrane potential	α ₂ -Adrenergic receptor Muscarinic acetylcholine receptor	
Gaolf	Adenyiyi cyclase	cAMP (increased)	Odorant receptors in nose	
Gaq	Phospholipase C	IP ₃ , DAG (increased)	α ₁ -Adrenergic receptor	
G _{ao}	Phospholipase C	IP ₃ , DAG (increased)	Acetylcholine receptor in endothelial cells	
G _{at}	cGMP phosphodiesterase	cGMP (decreased)	Rhodopsin (light receptor) in rod cells	

*A given G_{α} subclass may be associated with more than one effector protein. To date, only one major $G_{\alpha s}$ has been identified, but multiple $G_{\alpha q}$ and $G_{\alpha i}$ proteins have been described. Effector proteins commonly are regulated by G_{α} but in some cases by $G_{\beta\gamma}$ or the combined action of G_{α} and $G_{\beta\gamma}$. $IP_3 = inositol 1,4,5$ -trisphosphate; DAG = 1,2-diacylglycerol. SOURCES: See L. Birnbaumer, 1992, *Cell* **71**:1069; Z. Farfel et al., 1999, *New Eng. J. Med.* **340**:1012; and K. Pierce et al., 2002, *Nature Rev.*

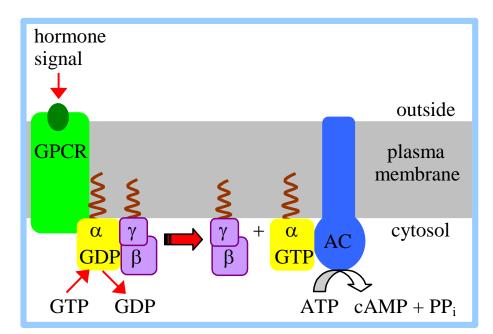
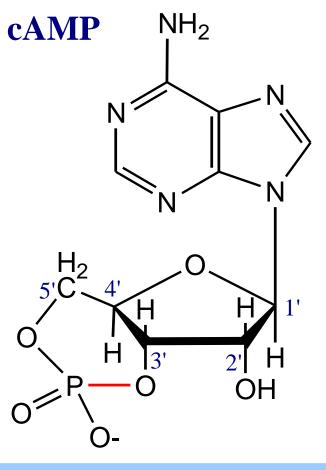

Mol. Cell Biol. 3:639.

Table 15-1 Molecular Cell Biology, Sixth Edition -----10

Summary of Hormones signaling pathways

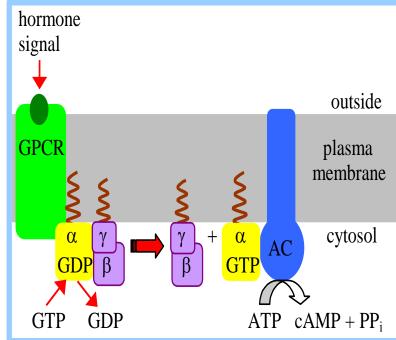
IP ₃	сАМР	cGMP	Tyrosine kinase - intrinsic	Tyrosine kinase - receptor associated	Steroid
GnRH	FSH	ANP	Insulin	Prolactin	Glucocorticoid
Gastrin	LH	NO (EDRF)	IGF-1	Cytokines (IL-2,6,8)	Estrogen
Oxytocin	ACTH		FGF	GH	Progesterone
TRH	TSH		PDGF		Testosterone
ADH (V ₁)	CRH				Aldosterone
Histamine (H ₁)	hCG				Vitamin D
Angiotensin II	РТН				T ₃ /T ₄
	Calcitonin				Cortisol
	Glucagon				
	GHRH (can act via IP ₃ as well)				

• The α subunit of a G-protein (G_{α}) binds **GTP**, & can hydrolyze it to GDP + P_i.

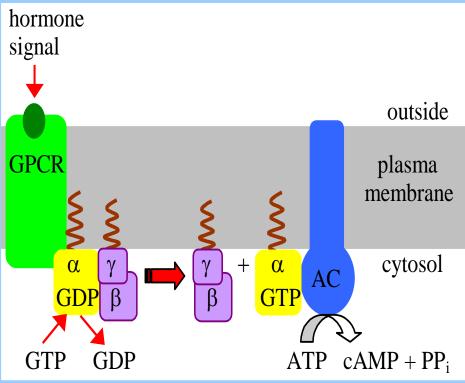

- $\alpha \& \gamma$ subunits have covalently attached **lipid anchors** that bind a G-protein to the plasma membrane cytosolic surface.
- Adenylate Cyclase (AC) is a transmembrane protein, with cytosolic domains forming the catalytic site.

Adenylate Cyclase

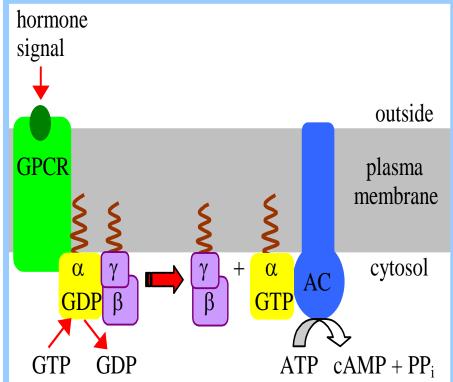
Adenylate Cyclase (Adenylyl Cyclas cAATP $\rightarrow cAMP + PP_i$


Binding of certain **hormones** (e.g., outer surface of a cell activates Ade form cAMP within the cell.

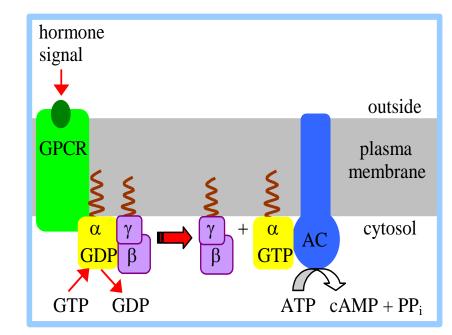
Cyclic AMP is thus considered to be **messenger**.

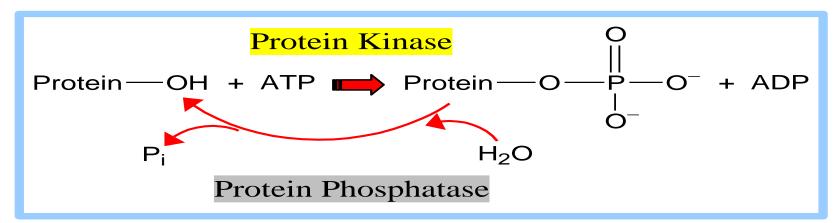


The **sequence of events** by which a hormone activates cAMP signaling:


- 1. Initially G_{α} has bound GDP, and α , β , & γ subunits are complexed together.
- $G_{\beta,\gamma}$, the complex of $\beta \& \gamma$ subunits, inhibits G_{α} .

- 2. Hormone binding, usually of a 7-helix receptor (GPCR)
 change in the receptor that protein on the cytosc
- The nucleotide-binding site accessible to the cytosol, wh
- G_{α} releases GDP & binds GT


- Substitution of GTP for GDP causes another conformational change in G_α.
- G_{α} -GTP dissociates from the inhibitory $\beta\gamma$ complex & can now bind to and activate Adenylate Cyclase.



4. Adenylate Cyclase,

activated by the stimulatory G_{α} -GTP, catalyzes synthesis of **cAMP**.

5. **Protein Kinase A** (cAMP Dependent Protein Kinase) catalyzes transfer of phosphate from ATP to serine or threonine residues of various cellular proteins, altering their activity.

Protein kinases and phosphatases are themselves regulated by complex signal cascades. For example:

- Some protein kinases are activated by **Ca**⁺⁺-calmodulin</sup>.
- Protein Kinase A is activated by cyclic-AMP (cAMP).

Protein Kinase A (cAMP-Dependent Protein Kinase) transfers P_i from ATP to OH of a Ser or Thr in a particular 5-amino acid sequence.

Protein Kinase A in the resting state is a complex of:

- 2 catalytic subunits (C)
- 2 regulatory subunits (R).
- **R₂C₂**: When each (**R**) binds 2 cAMP, a conformational change causes (**R**) to release (**C**).

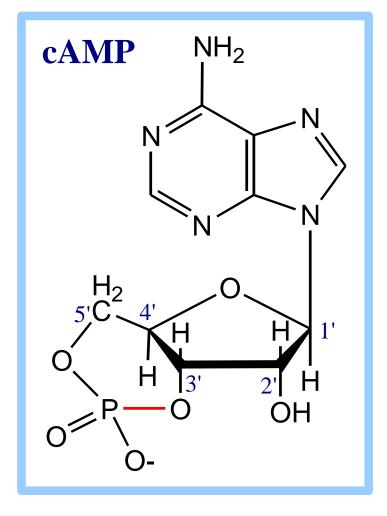
The catalytic subunits can then catalyze phosphorylation of Ser or Thr on target proteins.

PKIs, Protein Kinase Inhibitors, modulate activity of the catalytic subunits (C).

Turn off of the signal:

1. G_{α} hydrolyzes GTP to GDP + P_i. (GTPase).

The presence of **GDP** on G_{α} causes it to rebind to the inhibitory $\beta\gamma$ complex.


Adenylate Cyclase is no longer activated.

 Phosphodiesterases catalyze hydrolysis of cAMP → AMP. **Phosphodiesterase** enzymes catalyze:

 $cAMP + H_2O \rightarrow AMP$

The phosphodiesterase that cleaves cAMP is activated by phosphorylation catalyzed by Protein Kinase A.

Thus **cAMP stimulates its own degradation**, leading to rapid turnoff of a cAMP signal.

3. Receptor desensitization varies with the hormone.

- In some cases the **activated receptor** is **phosphorylated** via a G-protein Receptor Kinase.
- The phosphorylated receptor then may bind to a protein β-arrestin.
- β-Arrestin promotes removal of the receptor from the membrane by clathrin-mediated endocytosis.
- β-Arrestin may also bind a cytosolic Phosphodiesterase, bringing this enzyme close to where cAMP is being produced, contributing to signal turnoff.

4. **Protein Phosphatase** catalyzes removal by hydrolysis of phosphates that were attached to proteins via Protein Kinase A.

- **Different** isoforms of G_{α} have different signal roles. E.g.:
 - The **stimulatory** $G_{s\alpha}$, when it binds GTP, **activates** Adenylate cyclase.
 - An **inhibitory** $G_{i\alpha}$, when it binds GTP, **inhibits** Adenylate cyclase.

 The complex of G_{β,γ} that is released when G_α binds GTP is itself an effector that binds to and activates or inhibits several other proteins.

E.g., $G_{\beta,\gamma}$ inhibits one of several isoforms of Adenylate Cyclase, contributing to rapid signal turnoff in cells that express that enzyme.

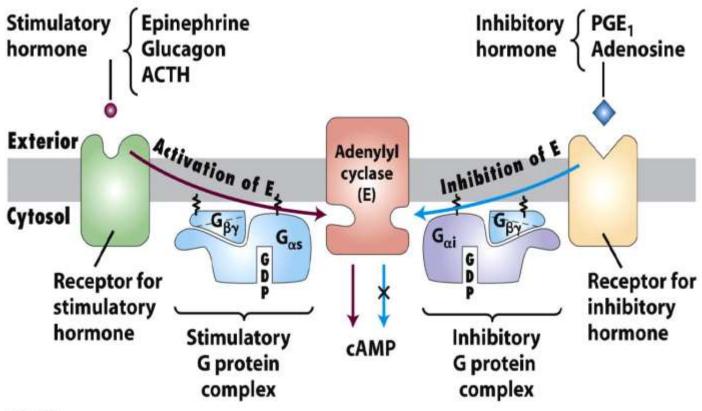


Figure 15-21