

Molecular Biology (3) The human genome

Mamoun Ahram, PhD Bilal Azab, PhD Second semester, 2018-2019

Resources

- This lecture
- Cooper, Ch. 5, pp.159-162, 166-171

SPECIES	BASE PAIRS (estimated)	GENES (estimated)	CHROMOSOMES
Human (Homo sapiens)	3.2 billion	~ 25,000	46
Mouse (Mus musculus)	2.6 billion	~ 25,000	40
Fruit Fly (Drosophilia melanogaster)	137 million	13,000	8
Roundworm (Caenorhabditis elegans)	97 million	19,000	12
Yeast (Saccharomyces cerevisia)	12.1 million	6,000	32
Bacteria (Escherichia coli)	4.6 million	3,200	1
Bacteria (H. influenzae)	1.8 million	1,700	1

Nucleotides per genomes

Components of the human genome

Repetitive DNA sequences

Repetitive DNA sequences

Tandem vs. dispersed

Satellite (macro-satellite) DNA

- Regions of 5-300 bp repeated 10⁶-10⁷ times (10% of genome)
- Centromeric repeats (171 bp) unique to each chromosome (you make chromosome-specific probes) by fluorescent in situ hybridization.
- Telomeric repeats

Repetitive DNA sequences

Mini-satellite DNA

 Mini satellite sequences or VNTRs (variable number of tandem repeats) of 20 to 100 bp repeated 20-50 times

Micro-satellite DNA

 STRs (short tandem repeats) of 2 to 10 bp repeated 10-100 times

Polymorphisms of VNTR and STR

 STRs and VNTRs are highly variable among individuals (polymorphic)

Thus, they are useful in DNA profiling for forensic testing

Microsatellites and VNTRs as DNA Markers

VNTR in medicine and more

The picture below illustrates VNTR allelic length variation among 6 individuals.

The likelihood of 2 unrelated individuals having same allelic pattern extremely improbable

Detection of an RFLP by Southern blotting

Real example

single-locus probe but multiple alleles

Thompson & Thompson Genetics in Medicine, p. 130, 1991

Single nucleotide polymorphism (SNPs)

- Another source of genetic variation
- Single-nucleotide substitutions of one base for another
- Two or more versions of a sequence must each be present in at least one percent of the general population
 - SNPs occur throughout the human genome about one in every 300 nucleotide base pairs.
 - ~10 million SNPs within the 3-billion-nucleotide human genome
 - Only 500,000 SNPs are thought to be relevant

Categories of SNPs

TTGGCCAGCTGGACGAGGGCGATGAC

Controls

22

Components of the human genome

Transposons (jumping genes)

They are segments of DNA that can move from their original position in the genome to a new location.

- Two classes:
 - DNA transposons (2-3% of human genome)
 - RNA transposons or retrotransposons (40% of human genome).
 - Long interspersed elements (LINEs)
 - Short interspersed elements (SINEs) An example is Alu (300 bp)
- Diseases often caused by transposons include hemophilia A and B, severe combined immunodeficiency, porphyria, predisposition to cancer, and Duchenne muscular dystrophy.

