

Manaun Abram DbD

Mamoun Ahram, PhD Bilal Azab, PhD Second semester, 2018-2019

Resources

This lectureCooper, pp 120-124

Restriction endonucleases

- Endonucleass are ezymes that degrade DNA within the molecule.
- Restriction endonucleases: Bacterial enzymes that recognize and cut (break) the phosphodiester bond between nucleotides at *specific* sequences (4- to 8-bp restriction sites) generating restriction fragments.

They recognize specific sequences

The enzyme EcoRI recognizes and cuts within the sequence (GAATTC).

Variant 1 *Eco*RI does not cut

GCC<mark>GCATTC</mark>TA CGG<mark>CGTAAG</mark>AT

The DNA stays intact

Variant 2 EcoRI does cut

GCCGAATTCTA CGGCTTAAGAT

The DNA is cut into two pieces

- Restriction endonucleases can cut the same DNA strand at several locations generating multiple restriction fragments of different lengths.
- What if a location on one strand is not recognized?

DNA polymorphisms

- Individual variations in DNA sequence (*genetic variants*) may create or remove restriction-enzyme recognition sites generating different restriction fragments.
 - Remember:
 - Our cells are diploid.
 - Alleles can be homozygous or heterozygous at any DNA location or sequence.

Restriction fragment length polymorphism

- The presence of different DNA forms in individuals generates a restriction fragment length polymorphism, or RFLP.
- Individuals can generate restriction fragments of variable lengths. This is known as molecular fingerprinting.
- These can be detected by gel electrophoresis by itself or along with Southern blotting.

Gel electrophoresis only

Electrophoresis then Southern blotting

Only DNA fragments that hybridize to the probe are detected.

Note: only the fragment that the probe hybridizes to is detected.

RFLP in the clinic

RFLP can be used as diagnostic tools.

- For example, if a mutation that results in the development of a disease also causes the generation of distinctive RFLP fragments, then we can tell:
 - if the person is diseased as a result of this mutation
 - from which parent this allele is inherited

Example 1: Disease detection by RFLP (sickle cell anemia)

- Sickle cell anemia is caused by a mutation in one nucleotide (base) in the globin gene that is responsible for making hemoglobin.
- The position of this nucleotide happens to be within a restriction site.
- Individuals can be have
 - Homozygous with two normal alleles (designated as A)
 - Heterozygous or carriers of one normal allele and one mutated allele (designated as AS)
 - Homozygous for the mutated allele, or affected (designated as S)

Example 2: Paternity testing

Real cases

