Quiz 2

Q1) A block of mass $M=6.00 \mathrm{~kg}$ is in contact with another block of mass $m=4.00 \mathrm{~kg}$ on a frictionless surface, as shown in the Figure. The M block is being pushed by a 20.0-N force toward the m block. What is the magnitude of the force of the M block on the m block?
A) 6.00 N
B) 12.0 N
C) 8.00 N
D) 10.0 N
E) 4.00 N

Q2) Two blocks connected by a string are pulled across a horizontal surface by a force applied to one of the blocks, as shown. The coefficient of kinetic friction between the blocks and the surface is 0.25 . If each block has an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ to the right, what is the magnitude F of the applied force?
A) 7.0
B) 18
C) 11
D) 14
E) 25

Q3) In the figure the coefficient of kinetic friction between the mass m_{1} and the horizontal surface is $\mu_{k}=0.10$ and $\mathrm{m}_{1}=6.0 \mathrm{~kg}, \mathrm{~m}_{2}=2.0 \mathrm{~kg}$. The acceleration of the system (in $\mathrm{m} / \mathrm{s}^{2}$) is:
A) 2.45
B) 1.72
C) 1.30
D) 3.9
E) 10.25

Q4) In the figure shown, the coefficient of static friction between the mass M and the vertical wall is $\mu_{s}=$ 0.20 . Given that $\mathbf{M}=2.0 \mathrm{~kg}$, determine the minimum value of the horizontal force \mathbf{F} required to keep the mass M stationary.
A) 98
A) 0
B) 20
C) 4
D) 47

