Introduction to Probability

 and Statistics Fourteenth EditionChapter 2 Describing Data with Numerical Measures

DESCRIBING DATA WITH Numerical Measures

- Graphical methods may not always be sufficient for describing data.
- Numerical measures can be created for both populations and samples.
- A parameter is a numerical descriptive measure calculated for a population.
- A statistic is a numerical descriptive measure calculated for a sample.

Measures of Center

- A measure along the horizontal axis of the data distribution that locates the center of the distribution.

Arithmetic Mean or

Average
oThe mean of a set of measurements is the sum of the measurements divided by the total number of measurements.

where $n=$ number of measurements
$\sum x_{i}=$ sum of all the measurements

EXAMPLE

-The set: 2, 9, 1, 5, 6

$$
\bar{x}=\frac{\sum x_{i}}{n}=\frac{2+9+11+5+6}{5}=\frac{33}{5}=6.6
$$

If we were able to enumerate the whole population, the population mean would be called μ (the Greek letter "mu").

Median

- The median of a set of measurements is the middle measurement when the measurements are ranked from smallest to largest.
- The position of the median is

$$
.5(n+1)
$$

once the measurements have been ordered.

Example

oThe set: $2,4,9,8,6,5,3 n=7$
oSort: $\quad 2,3,4,5,6,8,9$
oPosition: . $5(h+1)=.5(7+1)=4^{\text {th }}$
Median $=4^{\text {th }}$ largest measurement

- The set: 2, 4, 9, 8, 6, $5 \quad n=6$
- Sort: 2, 4, 5, 6, 8, 9
- Position: . $5(n+1)=.5(6+1)=3.5^{\text {th }}$

Median $=(5+6) / 2=5.5-$ average of the $3^{\text {rd }}$ and $4^{\text {th }}$ measurements

Mode

- The mode is the measurement which occurs most frequently.
-The set: $2,4,9,8,8,5,3$
- The mode is 8 , which occurs twice
-The set: $2,2,9,8,8,5,3$
- There are two modes-8 and 2 (bimodal)
-The set: 2, 4, 9, 8, 5, 3
- There is no mode (each value is unique).

Example

The number of quarts of milk purchased by 25 households:
$\begin{array}{lllllllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 5\end{array}$

- Mean?

$$
\bar{x}=\frac{\sum x_{i}}{n}=\frac{55}{25}=2.2
$$

- Median?

$$
m=2
$$

- Mode? (Highest peak)
mode $=2$

Frequency Table For Quarts of Milk Purchased

Quarts of Milk	Freq.
0	2
1	5
2	9
3	5
4	3
5	1
Total	25

Extreme Values

- The mean is more easily affected by extremely large or small values than the median.

-The median is often used as a measure of center when the distribution is skewed.

Extreme Values

Symmetric: Mean = Median

Skewed right: Mean > Median

Skewed left: Mean < Median

Measures of Variability

- A measure along the horizontal axis of the data distribution that describes the spread of the distribution from the center.

The Range

- The range, \mathbf{R}, of a set of n measurements is the difference between the largest and smallest measurements.
- Example: A botanist records the number of petals on 5 flowers:

$$
5,12,6,8,14
$$

- The range is

$$
R=14-5=9
$$

-Quick and easy, but only uses 2 of the 5 measurements.

The Variance

o The variance is measure of variability that uses all the measurements. It measures the average deviation of the measurements about their mean.
oFlower petals: $5,12,6,8,14$

The Variance

- The variance of a population of N measurements is the average of the squared deviations of the measurements about their mean μ.

$$
\sigma^{2}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

- The variance of a sample of n measurements is the sum of the squared deviations of the measurements about their mean, divided by ($n-1$).

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

The Standard Deviation

- In calculating the variance, we squared all of the deviations, and in doing so changed the scale of the measurements.
- To return this measure of variability to the original units of measure, we calculate the standard deviation, the positive square root of the variance.

Population standard deviation : $\sigma=\sqrt{\sigma^{2}}$ Sample standard deviation : $s=\sqrt{s^{2}}$

Two Ways to Calculate the Sample Variance

Use the Definition Formula:

$$
\begin{gathered}
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
=\frac{60}{4}=15 \\
s=\sqrt{s^{2}}=\sqrt{15}=3.87
\end{gathered}
$$

Two Ways то

 Calculate the SampleVariance
Use the Calculational Formula:

Some Notes

- The value of s is ALWAYS positive.
- The larger the value of s^{2} or s, the larger the variability of the data set.
- Why divide by $\mathbf{n - 1}$?
- The sample standard deviation s is often used to estimate the population standard deviation σ. Dividing by $n-1$ gives us a better estimate of σ.

